Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(5): 114122, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38652659

RESUMO

DNA sensing is important for antiviral immunity. The DNA sensor cGAS synthesizes 2'3'-cyclic GMP-AMP (cGAMP), a second messenger that activates STING, which induces innate immunity. cGAMP not only activates STING in the cell where it is produced but cGAMP also transfers to other cells. Transporters, channels, and pores (including SLC19A1, SLC46A2, P2X7, ABCC1, and volume-regulated anion channels (VRACs)) release cGAMP into the extracellular space and/or import cGAMP. We report that infection with multiple human viruses depletes some of these cGAMP conduits. This includes herpes simplex virus 1 (HSV-1) that targets SLC46A2, P2X7, and the VRAC subunits LRRC8A and LRRC8C for degradation. The HSV-1 protein UL56 is necessary and sufficient for these effects that are mediated at least partially by proteasomal turnover. UL56 thereby inhibits cGAMP uptake via VRAC, SLC46A2, and P2X7. Taken together, HSV-1 antagonizes intercellular cGAMP transfer. We propose that this limits innate immunity by reducing cell-to-cell communication via the immunotransmitter cGAMP.

2.
Proc Natl Acad Sci U S A ; 121(4): e2309628121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38227660

RESUMO

Human bone marrow failure (BMF) syndromes result from the loss of hematopoietic stem and progenitor cells (HSPC), and this loss has been attributed to cell death; however, the cell death triggers, and mechanisms remain unknown. During BMF, tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ) increase. These ligands are known to induce necroptosis, an inflammatory form of cell death mediated by RIPK1, RIPK3, and MLKL. We previously discovered that mice with a hematopoietic RIPK1 deficiency (Ripk1HEM KO) exhibit inflammation, HSPC loss, and BMF, which is partially ameliorated by a RIPK3 deficiency; however, whether RIPK3 exerts its effects through its function in mediating necroptosis or other forms of cell death remains unclear. Here, we demonstrate that similar to a RIPK3 deficiency, an MLKL deficiency significantly extends survival and like Ripk3 deficiency partially restores hematopoiesis in Ripk1HEM KO mice revealing that both necroptosis and apoptosis contribute to BMF in these mice. Using mouse models, we show that the nucleic acid sensor Z-DNA binding protein 1 (ZBP1) is up-regulated in mouse RIPK1-deficient bone marrow cells and that ZBP1's function in endogenous nucleic acid sensing is necessary for HSPC death and contributes to BMF. We also provide evidence that IFNγ mediates HSPC death in Ripk1HEM KO mice, as ablation of IFNγ but not TNFα receptor signaling significantly extends survival of these mice. Together, these data suggest that RIPK1 maintains hematopoietic homeostasis by preventing ZBP1 activation and induction of HSPC death.


Assuntos
Ácidos Nucleicos , Pancitopenia , Animais , Humanos , Camundongos , Apoptose/genética , Transtornos da Insuficiência da Medula Óssea , Morte Celular/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Necrose/metabolismo , Ácidos Nucleicos/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
3.
Sci Adv ; 9(37): eadi2687, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703374

RESUMO

PARP14 is a mono-ADP-ribosyl transferase involved in the control of immunity, transcription, and DNA replication stress management. However, little is known about the ADP-ribosylation activity of PARP14, including its substrate specificity or how PARP14-dependent ADP-ribosylation is reversed. We show that PARP14 is a dual-function enzyme with both ADP-ribosyl transferase and hydrolase activity acting on both protein and nucleic acid substrates. In particular, we show that the PARP14 macrodomain 1 is an active ADP-ribosyl hydrolase. We also demonstrate hydrolytic activity for the first macrodomain of PARP9. We reveal that expression of a PARP14 mutant with the inactivated macrodomain 1 results in a marked increase in mono(ADP-ribosyl)ation of proteins in human cells, including PARP14 itself and antiviral PARP13, and displays specific cellular phenotypes. Moreover, we demonstrate that the closely related hydrolytically active macrodomain of SARS2 Nsp3, Mac1, efficiently reverses PARP14 ADP-ribosylation in vitro and in cells, supporting the evolution of viral macrodomains to counteract PARP14-mediated antiviral response.


Assuntos
COVID-19 , Transferases , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases , Antivirais , Hidrolases , Poli(ADP-Ribose) Polimerases/genética
4.
J Exp Med ; 220(8)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37450010

RESUMO

Nucleic acid sensing is a central process in the immune system, with far-reaching roles in antiviral defense, autoinflammation, and cancer. Z-DNA binding protein 1 (ZBP1) is a sensor for double-stranded DNA and RNA helices in the unusual left-handed Z conformation termed Z-DNA and Z-RNA. Recent research established ZBP1 as a key upstream regulator of cell death and proinflammatory signaling. Recognition of Z-DNA/RNA by ZBP1 promotes host resistance to viral infection but can also drive detrimental autoinflammation. Additionally, ZBP1 has interesting roles in cancer and other disease settings and is emerging as an attractive target for therapy.


Assuntos
DNA Forma Z , Ácidos Nucleicos , Proteínas de Ligação a RNA/metabolismo , Morte Celular , RNA/metabolismo
5.
Ann Rheum Dis ; 82(6): 754-762, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36858821

RESUMO

BACKGROUND: Type I interferons (IFN-Is) play a role in a broad range of rheumatic and musculoskeletal diseases (RMDs), and compelling evidence suggests that their measurement could have clinical value, although testing has not progressed into clinical settings. OBJECTIVE: To develop evidence-based points to consider (PtC) for the measurement and reporting of IFN-I assays in clinical research and to determine their potential clinical utility. METHODS: EULAR standardised operating procedures were followed. A task force including rheumatologists, immunologists, translational scientists and a patient partner was formed. Two systematic reviews were conducted to address methodological and clinical questions. PtC were formulated based on the retrieved evidence and expert opinion. Level of evidence and agreement was determined. RESULTS: Two overarching principles and 11 PtC were defined. The first set (PtC 1-4) concerned terminology, assay characteristics and reporting practices to enable more consistent reporting and facilitate translation and collaborations. The second set (PtC 5-11) addressed clinical applications for diagnosis and outcome assessments, including disease activity, prognosis and prediction of treatment response. The mean level of agreement was generally high, mainly in the first PtC set and for clinical applications in systemic lupus erythematosus. Harmonisation of assay methodology and clinical validation were key points for the research agenda. CONCLUSIONS: IFN-I assays have a high potential for implementation in the clinical management of RMDs. Uptake of these PtC will facilitate the progress of IFN-I assays into clinical practice and may be also of interest beyond rheumatology.


Assuntos
Doenças Musculoesqueléticas , Reumatologia , Humanos
6.
RMD Open ; 9(1)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36863752

RESUMO

OBJECTIVES: To systematically review the literature for assay methods that aim to evaluate type I interferon (IFN-I) pathway activation and to harmonise-related terminology. METHODS: Three databases were searched for reports of IFN-I and rheumatic musculoskeletal diseases. Information about the performance metrics of assays measuring IFN-I and measures of truth were extracted and summarised. A EULAR task force panel assessed feasibility and developed consensus terminology. RESULTS: Of 10 037 abstracts, 276 fulfilled eligibility criteria for data extraction. Some reported more than one technique to measure IFN-I pathway activation. Hence, 276 papers generated data on 412 methods. IFN-I pathway activation was measured using: qPCR (n=121), immunoassays (n=101), microarray (n=69), reporter cell assay (n=38), DNA methylation (n=14), flow cytometry (n=14), cytopathic effect assay (n=11), RNA sequencing (n=9), plaque reduction assay (n=8), Nanostring (n=5), bisulphite sequencing (n=3). Principles of each assay are summarised for content validity. Concurrent validity (correlation with other IFN assays) was presented for n=150/412 assays. Reliability data were variable and provided for 13 assays. Gene expression and immunoassays were considered most feasible. Consensus terminology to define different aspects of IFN-I research and practice was produced. CONCLUSIONS: Diverse methods have been reported as IFN-I assays and these differ in what elements or aspects of IFN-I pathway activation they measure and how. No 'gold standard' represents the entirety of the IFN pathway, some may not be specific for IFN-I. Data on reliability or comparing assays were limited, and feasibility is a challenge for many assays. Consensus terminology should improve consistency of reporting.


Assuntos
Interferon Tipo I , Doenças Musculoesqueléticas , Doenças Reumáticas , Humanos , Reprodutibilidade dos Testes , Doenças Musculoesqueléticas/diagnóstico , Doenças Musculoesqueléticas/etiologia , Doenças Reumáticas/diagnóstico , Comitês Consultivos
7.
RMD Open ; 9(1)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36882218

RESUMO

BACKGROUND: Type I interferons (IFN-I) contribute to a broad range of rheumatic and musculoskeletal diseases (RMDs). Compelling evidence suggests that the measurement of IFN-I pathway activation may have clinical value. Although several IFN-I pathway assays have been proposed, the exact clinical applications are unclear. We summarise the evidence on the potential clinical utility of assays measuring IFN-I pathway activation. METHODS: A systematic literature review was conducted across three databases to evaluate the use of IFN-I assays in diagnosis and monitor disease activity, prognosis, response to treatment and responsiveness to change in several RMDs. RESULTS: Of 366 screened, 276 studies were selected that reported the use of assays reflecting IFN-I pathway activation for disease diagnosis (n=188), assessment of disease activity (n=122), prognosis (n=20), response to treatment (n=23) and assay responsiveness (n=59). Immunoassays, quantitative PCR (qPCR) and microarrays were reported most frequently, while systemic lupus erythematosus (SLE), rheumatoid arthritis, myositis, systemic sclerosis and primary Sjögren's syndrome were the most studied RMDs. The literature demonstrated significant heterogeneity in techniques, analytical conditions, risk of bias and application in diseases. Inadequate study designs and technical heterogeneity were the main limitations. IFN-I pathway activation was associated with disease activity and flare occurrence in SLE, but their incremental value was uncertain. IFN-I pathway activation may predict response to IFN-I targeting therapies and may predict response to different treatments. CONCLUSIONS: Evidence indicates potential clinical value of assays measuring IFN-I pathway activation in several RMDs, but assay harmonisation and clinical validation are urged. This review informs the EULAR points to consider for the measurement and reporting of IFN-I pathway assays.


Assuntos
Interferon Tipo I , Lúpus Eritematoso Sistêmico , Doenças Musculoesqueléticas , Miosite , Humanos , Doenças Musculoesqueléticas/diagnóstico , Doenças Musculoesqueléticas/etiologia , Lúpus Eritematoso Sistêmico/diagnóstico
8.
Life Sci Alliance ; 6(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36241425

RESUMO

New therapeutic targets are a valuable resource for treatment of SARS-CoV-2 viral infection. Genome-wide association studies have identified risk loci associated with COVID-19, but many loci are associated with comorbidities and are not specific to host-virus interactions. Here, we identify and experimentally validate a link between reduced expression of EXOSC2 and reduced SARS-CoV-2 replication. EXOSC2 was one of the 332 host proteins examined, all of which interact directly with SARS-CoV-2 proteins. Aggregating COVID-19 genome-wide association studies statistics for gene-specific eQTLs revealed an association between increased expression of EXOSC2 and higher risk of clinical COVID-19. EXOSC2 interacts with Nsp8 which forms part of the viral RNA polymerase. EXOSC2 is a component of the RNA exosome, and here, LC-MS/MS analysis of protein pulldowns demonstrated interaction between the SARS-CoV-2 RNA polymerase and most of the human RNA exosome components. CRISPR/Cas9 introduction of nonsense mutations within EXOSC2 in Calu-3 cells reduced EXOSC2 protein expression and impeded SARS-CoV-2 replication without impacting cellular viability. Targeted depletion of EXOSC2 may be a safe and effective strategy to protect against clinical COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/genética , Cromatografia Líquida , Códon sem Sentido , RNA Polimerases Dirigidas por DNA/genética , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Estudo de Associação Genômica Ampla , Humanos , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , SARS-CoV-2/genética , Espectrometria de Massas em Tandem , Proteínas do Complexo da Replicase Viral , Replicação Viral/genética
9.
J Virol Methods ; 312: 114661, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36442623

RESUMO

Varicella-Zoster virus (VZV) is a human herpesvirus and causes chickenpox and shingles. Research into its molecular virology has been hampered by a lack of methods for generation of high-titre, cell-free infectious virus preparations. VZV propagation and infection in vitro are therefore commonly achieved by co-culture of uninfected 'target' cells with infected 'inoculum' cells. A major drawback of this approach is that it results in mixed cell populations after infection. To overcome this limitation we developed a transwell-based VZV infection system. Infected inoculum cells and uninfected target cells are spatially separated by a transwell membrane. While cell-cell contact and VZV spread can occur through membrane pores, the two cell populations do not mix. This simple protocol requires no special instrumentation or reagents. We successfully used this system for infection of a range of target cells and obtained pure populations for downstream analyses such as flow cytometry and RT-qPCR. In sum, we developed a broadly applicable approach to study the molecular and cellular biology as well as host-pathogen interactions of VZV.


Assuntos
Varicela , Herpes Zoster , Humanos , Herpesvirus Humano 3
10.
EMBO Rep ; 23(12): e55839, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36268590

RESUMO

ZBP1 is an interferon-induced cytosolic nucleic acid sensor that facilitates antiviral responses via RIPK3. Although ZBP1-mediated programmed cell death is widely described, whether and how it promotes inflammatory signaling is unclear. Here, we report a ZBP1-induced inflammatory signaling pathway mediated by K63- and M1-linked ubiquitin chains, which depends on RIPK1 and RIPK3 as scaffolds independently of cell death. In human HT29 cells, ZBP1 associated with RIPK1 and RIPK3 as well as ubiquitin ligases cIAP1 and LUBAC. ZBP1-induced K63- and M1-linked ubiquitination of RIPK1 and ZBP1 to promote TAK1- and IKK-mediated inflammatory signaling and cytokine production. Inhibition of caspase activity suppressed ZBP1-induced cell death but enhanced cytokine production in a RIPK1- and RIPK3 kinase activity-dependent manner. Lastly, we provide evidence that ZBP1 signaling contributes to SARS-CoV-2-induced cytokine production. Taken together, we describe a ZBP1-RIPK3-RIPK1-mediated inflammatory signaling pathway relayed by the scaffolding role of RIPKs and regulated by caspases, which may induce inflammation when ZBP1 is activated below the threshold needed to trigger a cell death response.


Assuntos
Morte Celular , Proteínas de Ligação a RNA , Proteína Serina-Treonina Quinases de Interação com Receptores , Humanos , Citocinas , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais , Ubiquitina , Proteínas de Ligação a RNA/genética , Células HT29 , Inflamação
11.
EMBO J ; 41(14): e109217, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35670106

RESUMO

Varicella-Zoster virus (VZV) causes chickenpox and shingles. Although the infection is associated with severe morbidity in some individuals, molecular mechanisms that determine innate immune responses remain poorly defined. We found that the cGAS/STING DNA sensing pathway was required for type I interferon (IFN) induction during VZV infection and that recognition of VZV by cGAS restricted its replication. Screening of a VZV ORF expression library identified the essential VZV tegument protein ORF9 as a cGAS antagonist. Ectopically or virally expressed ORF9 bound to endogenous cGAS leading to reduced type I IFN responses to transfected DNA. Confocal microscopy revealed co-localisation of cGAS and ORF9. ORF9 and cGAS also interacted directly in a cell-free system and phase-separated together with DNA. Furthermore, ORF9 inhibited cGAMP production by cGAS. Taken together, these results reveal the importance of the cGAS/STING DNA sensing pathway for VZV recognition and identify a VZV immune antagonist that partially but directly interferes with DNA sensing via cGAS.


Assuntos
Herpesvirus Humano 3 , Interferon Tipo I , Nucleotidiltransferases , Proteínas Virais , DNA/metabolismo , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/imunologia , Humanos , Imunidade Inata , Interferon Tipo I/imunologia , Proteínas de Membrana/imunologia , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/imunologia , Proteínas Virais/imunologia
12.
Elife ; 112022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35475759

RESUMO

Host proteins sense viral products and induce defence mechanisms, particularly in immune cells. Using cell-free assays and quantitative mass spectrometry, we determined the interactome of capsid-host protein complexes of herpes simplex virus and identified the large dynamin-like GTPase myxovirus resistance protein B (MxB) as an interferon-inducible protein interacting with capsids. Electron microscopy analyses showed that cytosols containing MxB had the remarkable capability to disassemble the icosahedral capsids of herpes simplex viruses and varicella zoster virus into flat sheets of connected triangular faces. In contrast, capsids remained intact in cytosols with MxB mutants unable to hydrolyse GTP or to dimerize. Our data suggest that MxB senses herpesviral capsids, mediates their disassembly, and thereby restricts the efficiency of nuclear targeting of incoming capsids and/or the assembly of progeny capsids. The resulting premature release of viral genomes from capsids may enhance the activation of DNA sensors, and thereby amplify the innate immune responses.


Assuntos
Capsídeo , Herpesviridae , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Interferons/metabolismo , Simplexvirus
13.
bioRxiv ; 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35291294

RESUMO

New therapeutic targets are a valuable resource in the struggle to reduce the morbidity and mortality associated with the COVID-19 pandemic, caused by the SARS-CoV-2 virus. Genome-wide association studies (GWAS) have identified risk loci, but some loci are associated with co-morbidities and are not specific to host-virus interactions. Here, we identify and experimentally validate a link between reduced expression of EXOSC2 and reduced SARS-CoV-2 replication. EXOSC2 was one of 332 host proteins examined, all of which interact directly with SARS-CoV-2 proteins; EXOSC2 interacts with Nsp8 which forms part of the viral RNA polymerase. Lung-specific eQTLs were identified from GTEx (v7) for each of the 332 host proteins. Aggregating COVID-19 GWAS statistics for gene-specific eQTLs revealed an association between increased expression of EXOSC2 and higher risk of clinical COVID-19 which survived stringent multiple testing correction. EXOSC2 is a component of the RNA exosome and indeed, LC-MS/MS analysis of protein pulldowns demonstrated an interaction between the SARS-CoV-2 RNA polymerase and the majority of human RNA exosome components. CRISPR/Cas9 introduction of nonsense mutations within EXOSC2 in Calu-3 cells reduced EXOSC2 protein expression, impeded SARS-CoV-2 replication and upregulated oligoadenylate synthase ( OAS) genes, which have been linked to a successful immune response against SARS-CoV-2. Reduced EXOSC2 expression did not reduce cellular viability. OAS gene expression changes occurred independent of infection and in the absence of significant upregulation of other interferon-stimulated genes (ISGs). Targeted depletion or functional inhibition of EXOSC2 may be a safe and effective strategy to protect at-risk individuals against clinical COVID-19.

14.
Front Oncol ; 11: 779739, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34900733

RESUMO

Hypoxia is a common phenomenon in solid tumours strongly linked to the hallmarks of cancer. Hypoxia promotes local immunosuppression and downregulates type I interferon (IFN) expression and signalling, which contribute to the success of many cancer therapies. Double-stranded RNA (dsRNA), transiently generated during mitochondrial transcription, endogenously activates the type I IFN pathway. We report the effects of hypoxia on the generation of mitochondrial dsRNA (mtdsRNA) in breast cancer. We found a significant decrease in dsRNA production in different cell lines under hypoxia. This effect was HIF1α/2α-independent. mtdsRNA was responsible for induction of type I IFN and significantly decreased after hypoxia. Mitochondrially encoded gene expression was downregulated and mtdsRNA bound by the dsRNA-specific J2 antibody was decreased during hypoxia. These findings reveal a new mechanism of hypoxia-induced immunosuppression that could be targeted by hypoxia-activated therapies.

16.
Mol Cell ; 81(20): 4109-4110, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34686311

RESUMO

Unusual nucleic acids activate innate immunity and may be present in transformed cells. Meng et al. (2021) find that cancer-associated mutations in NF2 turn this tumor suppressor into a potent antagonist of DNA- and RNA-induced innate immune signaling.


Assuntos
Interferons , Ácidos Nucleicos , Imunidade Inata , RNA , Transdução de Sinais
17.
Immunity ; 54(9): 1961-1975.e5, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34525337

RESUMO

Nucleic acids are powerful triggers of innate immunity and can adopt the Z-conformation, an unusual left-handed double helix. Here, we studied the biological function(s) of Z-RNA recognition by the adenosine deaminase ADAR1, mutations in which cause Aicardi-Goutières syndrome. Adar1mZα/mZα mice, bearing two point mutations in the Z-nucleic acid binding (Zα) domain that abolish Z-RNA binding, displayed spontaneous induction of type I interferons (IFNs) in multiple organs, including in the lung, where both stromal and hematopoietic cells showed IFN-stimulated gene (ISG) induction. Lung neutrophils expressed ISGs induced by the transcription factor IRF3, indicating an initiating role for neutrophils in this IFN response. The IFN response in Adar1mZα/mZα mice required the adaptor MAVS, implicating cytosolic RNA sensing. Adenosine-to-inosine changes were enriched in transposable elements and revealed a specific requirement of ADAR1's Zα domain in editing of a subset of RNAs. Thus, endogenous RNAs in Z-conformation have immunostimulatory potential curtailed by ADAR1, with relevance to autoinflammatory disease in humans.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Adenosina Desaminase/genética , Interferon Tipo I/imunologia , RNA de Cadeia Dupla/genética , Adenosina/genética , Adenosina/metabolismo , Animais , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/imunologia , Inosina/genética , Inosina/metabolismo , Interferon Tipo I/genética , Camundongos , Mutação , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/imunologia , Edição de RNA/genética , RNA de Cadeia Dupla/metabolismo
18.
Nat Commun ; 12(1): 4175, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234126

RESUMO

Although we can now measure single-cell signaling responses with multivariate, high-throughput techniques our ability to interpret such measurements is still limited. Even interpretation of dose-response based on single-cell data is not straightforward: signaling responses can differ significantly between cells, encompass multiple signaling effectors, and have dynamic character. Here, we use probabilistic modeling and information-theory to introduce fractional response analysis (FRA), which quantifies changes in fractions of cells with given response levels. FRA can be universally performed for heterogeneous, multivariate, and dynamic measurements and, as we demonstrate, quantifies otherwise hidden patterns in single-cell data. In particular, we show that fractional responses to type I interferon in human peripheral blood mononuclear cells are very similar across different cell types, despite significant differences in mean or median responses and degrees of cell-to-cell heterogeneity. Further, we demonstrate that fractional responses to cytokines scale linearly with the log of the cytokine dose, which uncovers that heterogeneous cellular populations are sensitive to fold-changes in the dose, as opposed to additive changes.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Interferon Tipo I/metabolismo , Leucócitos Mononucleares/metabolismo , Modelos Imunológicos , Células 3T3 , Animais , Voluntários Saudáveis , Humanos , Interferon Tipo I/imunologia , Leucócitos Mononucleares/imunologia , Camundongos , Modelos Estatísticos , Cultura Primária de Células , Transdução de Sinais/imunologia , Análise de Célula Única , Software
19.
Sci Rep ; 11(1): 13638, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34211037

RESUMO

Human cells respond to infection by SARS-CoV-2, the virus that causes COVID-19, by producing cytokines including type I and III interferons (IFNs) and proinflammatory factors such as IL6 and TNF. IFNs can limit SARS-CoV-2 replication but cytokine imbalance contributes to severe COVID-19. We studied how cells detect SARS-CoV-2 infection. We report that the cytosolic RNA sensor MDA5 was required for type I and III IFN induction in the lung cancer cell line Calu-3 upon SARS-CoV-2 infection. Type I and III IFN induction further required MAVS and IRF3. In contrast, induction of IL6 and TNF was independent of the MDA5-MAVS-IRF3 axis in this setting. We further found that SARS-CoV-2 infection inhibited the ability of cells to respond to IFNs. In sum, we identified MDA5 as a cellular sensor for SARS-CoV-2 infection that induced type I and III IFNs.


Assuntos
COVID-19/imunologia , Interferon Tipo I/imunologia , Helicase IFIH1 Induzida por Interferon/imunologia , Interferons/imunologia , SARS-CoV-2/imunologia , Linhagem Celular , Humanos , Imunidade Inata , RNA/imunologia , Interferon lambda
20.
Nat Cell Biol ; 23(7): 704-717, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34253898

RESUMO

Haematopoietic stem cells (HSCs) are normally quiescent, but have evolved mechanisms to respond to stress. Here, we evaluate haematopoietic regeneration induced by chemotherapy. We detect robust chromatin reorganization followed by increased transcription of transposable elements (TEs) during early recovery. TE transcripts bind to and activate the innate immune receptor melanoma differentiation-associated protein 5 (MDA5) that generates an inflammatory response that is necessary for HSCs to exit quiescence. HSCs that lack MDA5 exhibit an impaired inflammatory response after chemotherapy and retain their quiescence, with consequent better long-term repopulation capacity. We show that the overexpression of ERV and LINE superfamily TE copies in wild-type HSCs, but not in Mda5-/- HSCs, results in their cycling. By contrast, after knockdown of LINE1 family copies, HSCs retain their quiescence. Our results show that TE transcripts act as ligands that activate MDA5 during haematopoietic regeneration, thereby enabling HSCs to mount an inflammatory response necessary for their exit from quiescence.


Assuntos
Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Elementos de DNA Transponíveis , Hematopoese/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Helicase IFIH1 Induzida por Interferon/metabolismo , Agonistas Mieloablativos/farmacologia , Animais , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Retrovirus Endógenos/genética , Ativação Enzimática , Células HEK293 , Células-Tronco Hematopoéticas/enzimologia , Humanos , Helicase IFIH1 Induzida por Interferon/genética , Ligantes , Elementos Nucleotídeos Longos e Dispersos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...